(4x+3x+1)-(4x^2-2)=5x-2

Simple and best practice solution for (4x+3x+1)-(4x^2-2)=5x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+3x+1)-(4x^2-2)=5x-2 equation:



(4x+3x+1)-(4x^2-2)=5x-2
We move all terms to the left:
(4x+3x+1)-(4x^2-2)-(5x-2)=0
We add all the numbers together, and all the variables
(7x+1)-(4x^2-2)-(5x-2)=0
We get rid of parentheses
-4x^2+7x-5x+1+2+2=0
We add all the numbers together, and all the variables
-4x^2+2x+5=0
a = -4; b = 2; c = +5;
Δ = b2-4ac
Δ = 22-4·(-4)·5
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{21}}{2*-4}=\frac{-2-2\sqrt{21}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{21}}{2*-4}=\frac{-2+2\sqrt{21}}{-8} $

See similar equations:

| 7(x+1)=62 | | 24+9y=17y | | 3x-x+8=2(x+4) | | (6x-1)-1=7(x+6) | | 3x(7x-4)=0 | | 2a+6+5a=3a+10 | | 8^3x=11^4x+4 | | -3v-14=6v-51 | | 4/(x-3)+5=2 | | 5(x-1)-19=-44 | | 4q^2=3q=3q^2-4q+18 | | 2x-5+x=4(x-3)+x | | (5x^2+x+3)-(5x^2+9)=4x+1 | | -12=2+k | | 28-3w=w | | -3x+33=-13 | | (6x^2+4x-1)-(6x^2+9)=14 | | 5(10+x)=4(14+x) | | 2v^2=36 | | 9y-4y=5 | | 120+2x/2=x | | 4(x-5)+3=-9 | | 6=2u+u | | 2x.5-7x+3^x.2=0 | | 3x^2+6x-34=0 | | 2x.5-7x3^x.2=0 | | x^2+0.75x^2=225 | | 3x/6=3 | | 3(n-7)-(8n-7)=10n | | 10(5+2x)9x=80/52 | | -4-15=3-x | | 8(w-7)=5+7w |

Equations solver categories